Boundary blow-up rates of large solutions for elliptic equations with convection terms
نویسندگان
چکیده
منابع مشابه
Boundary Blow–up Rates of Large Solutions for Quasilinear Elliptic Equations with Convention Terms
We use Karamata regular variation theory to study the exact asymptotic behavior of large solutions near the boundary to a class of quasilinear elliptic equations with convection terms ⎧⎨ ⎩ Δpu±|∇u|q(p−1) = b(x) f (u), x ∈Ω,
متن کاملBoundary blow up solutions for fractional elliptic equations
In this article we study existence of boundary blow up solutions for some fractional elliptic equations including (−∆)u+ u = f in Ω, u = g on Ω, lim x∈Ω,x→∂Ω u(x) = ∞, where Ω is a bounded domain of class C2, α ∈ (0, 1) and the functions f : Ω → R and g : RN \ Ω̄ → R are continuous. We obtain existence of a solution u when the boundary value g blows up at the boundary and we get explosion rate f...
متن کاملFrom blow-up boundary solutions to equations with singular nonlinearities
In this survey we report on some recent results related to various singular phenomena arising in the study of some classes of nonlinear elliptic equations. We establish qualitative results on the existence, nonexistence or the uniqueness of solutions and we focus on the following types of problems: (i) blow-up boundary solutions of logistic equations; (ii) Lane-Emden-Fowler equations with singu...
متن کاملLarge Solutions of Semilinear Elliptic Equations with Nonlinear Gradient Terms
We show that large positive solutions exist for the equation (P±) :∆u±|∇u|q = p(x)uγ in Ω ⊆ RN(N ≥ 3) for appropriate choices of γ > 1,q > 0 in which the domain Ω is either bounded or equal to RN . The nonnegative function p is continuous and may vanish on large parts of Ω. If Ω = RN , then p must satisfy a decay condition as |x| →∞. For (P+), the decay condition is simply ∫∞ 0 tφ(t)dt <∞, wher...
متن کاملOn Uniqueness of Boundary Blow-up Solutions of a Class of Nonlinear Elliptic Equations
We study boundary blow-up solutions of semilinear elliptic equations Lu = up + with p > 1, or Lu = e with a > 0, where L is a second order elliptic operator with measurable coefficients. Several uniqueness theorems and an existence theorem are obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2011
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2010.06.031